玩转python进程使用,知识点讲解与代码演示

1.进程与线程的区别?

1.1形象来区分

  • 进程,能够完成多任务,比如 在一台电脑上能够同时运行多个QQ
  • 线程,能够完成多任务,比如 一个QQ中的多个聊天窗口

1.2.原理区分

  1. 进程是系统进行资源分配和调度的一个独立单位,所谓的进程就是“运行的程序+需要的资源”
  2. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源.

1.3两者之间的关系

  • 一个程序至少有一个进程,一个进程至少有一个线程.
  • 线程的划分尺度小于进程(资源比进程少),使得多线程程序的并发性高。
  • 进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率
  • 线线程不能够独立执行,必须依存在进程中

2.python中进程的实现

     python中的multiprocessing模块就是跨平台版本的多进程模块,提供了一个Process类来代表一个进程对象,这个对象可以理解为是一个独立的进程,可以执行另外的事情

2.1python中多进程或多线程实现多任务模式

尖叫提示:如果是在window下执行多线程代码,必须要将实际执行的代码封装到if __name__ == "__main__":中去执行 ,不然肯定会报错,具体原因可以参考我的博客:https://blog.csdn.net/qq_26442553/article/details/94595715

import threading
import time
import multiprocessing

def test1():
    while True:
        print("1--------")
        time.sleep(1)

def test2():
    while True:
        print("2--------")
        time.sleep(1)
def main():
 #    t1 = threading.Thread(target=test1)
 #    t2 = threading.Thread(target=test2)
 #    t1.start()
 #    t2.start()

    p1 = multiprocessing.Process(target=test1)  #用法和多线程差不多
    p2 = multiprocessing.Process(target=test2)
    p1.start()
    p2.start()
#创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动

if __name__ == "__main__":
    main()
'''
1--------
2--------
1--------
2--------
1--------
2--------
1--------
2--------
'''

2.2Process类的常见方法介绍

Process([group [, target [, name [, args [, kwargs]]]]])

  • target:如果传递了函数的引用,可以任务这个子进程就执行这里的代码
  • args:给target指定的函数传递的参数,以元组的方式传递
  • kwargs:给target指定的函数传递命名参数
  • name:给进程设定一个名字,可以不设定
  • group:指定进程组,大多数情况下用不到

Process创建的实例对象的常用方法:

  • start():启动子进程实例(创建子进程)
  • is_alive():判断进程子进程是否还在活着
  • join([timeout]):是否等待子进程执行结束,或等待多少秒
  • terminate():不管任务是否完成,立即终止子进程

 Process创建的实例对象的常用属性:

  • name:当前进程的别名,默认为Process-N,N为从1开始递增的整数
  • pid:当前进程的pid(进程号)
import time

def test(a, b, c, *args, **kwargs):
    print(a)
    print(b)
    print(c)
    print(args)
    print(kwargs)

def main():
    print("----in 主进程 pid=%d---父进程pid=%d----" % (os.getpid(), os.getppid()))  #显示进程号
    p = multiprocessing.Process(target=test, args=(11, 22, 33, 44, 55, 66, 77, 88), kwargs={"mm":11})
    p.start()

if __name__ == "__main__":
    main()
'''
----in 主进程 pid=9796---父进程pid=15924----
11
22
33
(44, 55, 66, 77, 88)
{'mm': 11}
'''

2.3进程间不共享全局变量,区别于线程

import multiprocessing
import os
import time

nums = [11, 22, 33]  #这里是可变对象的全局变量,所以在函数中修改其值时不用global声明

def test():
    for i in range(33,36):
        nums.append(i)
        print("在进程中1中nums=%s" % str(nums))
        time.sleep(3)

def test2():
    print("在进程中2中nums=%s" % str(nums))

def main():
    print("----in 主进程 pid=%d---父进程pid=%d----" % (os.getpid(), os.getppid()))
    p1 = multiprocessing.Process(target=test)
    p1.start()

    # time.sleep(1)
    p1.join() #保证让p1执行完,再执行p2

    p2 = multiprocessing.Process(target=test2)
    p2.start()

if __name__ == "__main__":
    main()
'''结果显示,p1虽然执行完了,但是p2还是修改前的值。

----in 主进程 pid=12292---父进程pid=15924----
在进程中1中nums=[11, 22, 33, 33]
在进程中1中nums=[11, 22, 33, 33, 34]
在进程中1中nums=[11, 22, 33, 33, 34, 35]
在进程中2中nums=[11, 22, 33]'''

3.进程间的通信实现

      Process之间有时需要通信,python中使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序。

1.初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);

2.如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;

3.如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;

  • Queue.get_nowait():相当Queue.get(False);

  • Queue.put(item,[block[, timeout]]):将item消息写入队列,block默认值为True;

4.如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;

5.如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;

  • Queue.put_nowait(item):相当Queue.put(item, False);
from multiprocessing import Queue

q=Queue(3) #初始化一个Queue对象,里面的数字表示最大接受消息数量
q.put("消息1") 
q.put("消息2")
#Queue.get([block[, timeout]]):获取队列中的一条消息,然后将其从列队中移除,block默认值为True;
print(q.get()) #消息1,因为对列是先入先出。 
q.put("消息1") 
print(q.full())  # False Queue.full():如果队列满了,返回True,反之False;
q.put("消息3")
print(q.full()) #True
print(q.empty()) #False Queue.empty():如果队列为空,返回True,反之False ;

#因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常
try:
    q.put("消息4",True,2)
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())  #Queue.qsize():返回当前队列包含的消息数量;

try:
    q.put_nowait("消息4")
except:
    print("消息列队已满,现有消息数量:%s"%q.qsize())

#推荐的方式,先判断消息列队是否已满,再写入
if not q.full():
    q.put_nowait("消息4")

#读取消息时,先判断消息列队是否为空,再读取
if not q.empty():
    for i in range(q.qsize()):
        print(q.get_nowait())
'''
消息1
False
True
消息列队已满,现有消息数量:3
消息列队已满,现有消息数量:3
消息2
消息1
消息3
'''

统一声明:关于原创博客内容,可能会有部分内容参考自互联网,如有原创链接会声明引用;如找不到原创链接,在此声明如有侵权请联系删除哈。关于转载博客,如有原创链接会声明;如找不到原创链接,在此声明如有侵权请联系删除哈。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页