Scala系列9:聚合操作reduce,filter,reduceLeft,reduceRight,fold的使用详解

目录

0.Scala函数式编程

1.filter过滤的使用详解

2.聚合操作reduce,reduceLeft,reduceRight使用详解

3.fold,foldLeft,foldRight的使用详解


0.Scala函数式编程

我们将来使用Spark/Flink的大量业务代码都会使用到函数式编程。下面这些事开发中常用的函数式编程。注意这些函数都是操作 Scala 集合的,一般会进行两类操作:转换操作(transformation )和行动操作(actions)(有些人喜欢叫他为聚合操作)。第一种操作类型将集合转换为另一个集合,第二种操作类型返回某些类型的值。

  1. 遍历( foreach )
  2. 映射( map )
  3. 映射扁平化( flatmap )
  4. 过滤( filter )
  5. 是否存在( exists )
  6. 排序( sorted 、 sortBy 、 sortWith )
  7. 分组( groupBy )
  8. 聚合计算( reduce )
  9. 折叠( fold )

1.filter过滤的使用详解

filter过滤出集合中符合特定条件的子集,实际上,过滤是一个转换类型的方法,但是比运用 min和 max方法简单。

【1.1语法结构】

【1.2执行过程】

【1.3使用演示】

//过滤filter
scala> List(1,2,3,4,5,6,7,8,9).filter(_ % 2 == 0)
res8: List[Int] = List(2, 4, 6, 8)

//复杂点的filter过滤,过滤页数大于120页码的
 case class Book(title: String, pages: Int)
  val books = Seq(
    Book("Future of Scala developers", 85),
    Book("Parallel algorithms", 240),
    Book("Object Oriented Programming", 130),
    Book("Mobile Development", 495)
  )

 println( books.filter(book => book.pages >= 120))
  //ArrayBuffer(Book(Parallel algorithms,240), Book(Object Oriented Programming,130), Book(Mobile Development,495))

2.聚合操作reduce,reduceLeft,reduceRight使用详解

聚合操作,可以将一个列表中的数据合并为一个。这种操作经常用来统计分析中。而map是对集合的元素进行加工操作,不改变集合的结构。

【2.1 语法结构】

   reduce表示将列表,传入一个函数进行聚合计算

尖叫提示:

  1.  reduce传入的也是一个函数,只是这个函数要传入两个参数。
  2. 其实就是迭代,reduceLeft函数表示从左聚合操作,reduceRight表示从右聚合。

【2.2 执行流程】

尖叫提示: 如上,首先元素1和元素2作为两个参数,传递给reduce聚合函数。然后参数1,参数2在聚合函数聚合以后做为一个新的参数和参数3一起传递给reduce进行聚合计算,依次类推,直到最后一个元素作为参数传递完为止。

【2.3使用演示】

 //标准函数版reduce
  val ar = List(1,2,3,4,5)
  println( ar.reduce((x,y)=>x+y))  //15求和
  println(ar.reduce((x,y)=>1*x-2*y)) //-27
  println(ar.reduceLeft((x,y)=>x-y)) // -13
  println(ar.reduceRight((x,y)=>x-y)) //3 特别注意reduceRight的计算逻辑 1-(2-(3-(4-5)))

  // 第一个下划线表示第一个参数,就是历史的聚合数据结果
  // 第二个下划线表示第二个参数,就是当前要聚合的数据元素
  println(ar.reduce(_+_)) //求和 15
  println(ar.reduceRight(_-_))   //3
  println(ar.reduceLeft(_+_))   //15
  println(ar.reduce(_*1-_*2)) //-27

3.fold,foldLeft,foldRight的使用详解

fold与reduce基本一样,只是多了一个指定初始值参数,注意这个时候计算从初始值开始,而不是第一个元素开始。

【3.2使用演示】

  val ar1 = List(1, 2, 3, 4, 5)
  println(ar1.fold(0)(_ + _)) //求和,给个求和的初始值0,15
  println(ar1.fold(100)(_ + _)) //求和,给个求和的初始值100,结果115
  println(ar1.foldLeft(0)(_-_))  //-15 0-1-2-3-4-5.注意这个和reduceLeft的别,有个初始值。
  println(ar.reduceLeft(_-_))   //-13

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页